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Abstract. We study the extension of Presburger arithmetic by the class of

sub-polynomial Hardy field functions, and show the majority of these exten-
sions to be undecidable. More precisely, we show that the theory Th(Z;<
,+, ⌊f⌉), where f is a Hardy field function and ⌊·⌉ the nearest integer opera-

tor, is undecidable when f grows polynomially faster than x. Further, we show
that when f grows sub-linearly quickly, but still as fast as some polynomial,

the theory Th(Z;<,+, ⌊f⌉) is undecidable.

1. Introduction

1.1. Background. Presburger arithmetic, the first-order theory Th(N; +) of the
natural numbers with addition, is known to be decidable [Pre29], whereas Peano
arithmetic, the extension of Presburger arithmetic by multiplication Th(N; +,×), is
known to be undecidable [Chu36]. The undecidability of Peano arithmetic provides
a method that can be used to show that various other extensions of Presburger
arithmetic are undecidable; if multiplication can be defined in such an extension,
then that extension is undecidable. For instance, the extension of Presburger arith-
metic with the squaring function Th(N; +, x 7→ x2) is undecidable, since a = bc
holds iff a = (b+ c)2 − b2 − c2 (This observation appears to first have been made
by Tarski [Tar53]).

This leads to the question of whether any extension of Presburger arithmetic
by a polynomial-like function in general is undecidable. It is easy to see that, for
integer-valued polynomials p of degree greater than 2, the extension of Presburger
arithmetic by that polynomial Th(N; +, p) is undecidable. This is because we can
define multiplication in the extension in much the same way as we could with the
squaring function. Bès [Bès01] surveys further decidable and undecidable extensions
of Presburger arithmetic, some of which are shown to be undecidable by defining
multiplication in Presburger arithmetic.

1.2. New Results. Hardy field functions (with polynomially bounded growth),
discussed in detail in Section 2, are a far-reaching generalisation of polynomial
sequences which is often studied in combinatorial number theory and ergodic theory,
see e.g. [Bos81], [Bos94], [Fra09] and [Ric22]. They are particularly well-behaved
from the point of view of analysis, which often allows one to adapt arguments
originally applied to polynomials to this wider class of functions.

While we postpone proper definition of Hardy field functions, for now we point
out that they contain all logarithmico-exponential functions — that is, the functions
that can be built up from the basic arithmetical operations over the reals (addition,
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2 H. BROWN AND J. KONIECZNY

multiplication, subtraction, division), exponentiation and the taking of logarithms.
Thus, for instance

f(x) = x2 + 3x+ 2, g(x) =
√
x log x+ 1

3
√
x
, and h(x) = 2x

3/5+log x − 2

are all Hardy field functions.
Since we are interested in extensions of the Presburger arithmetic — which

concerns the integers — and since Hardy field functions generally take real values
we need a way to construct integer-valued variants of Hardy field functions. For this,
we recall that for x ∈ R the operator ⌊x⌉ denotes the best integer approximation of
x, meaning that ⌊x⌉ − 1/2 ≤ x < ⌊x⌉+1/2. We will also occasionally use the floor
and the ceiling functions, ⌊x⌋ and ⌈x⌉, respectively. For a function f we let ⌊f⌉
denote the function that rounds f to the nearest integer (i.e. ⌊f⌉ (x) = ⌊f(x)⌉ =
⌈f(x)− (1/2)⌉). Another technical issue we need to deal with is that Hardy field
functions are generally defined only on an interval [x0,∞) rather than on all of R.
For the sake of simplicity, by convention, we extend any Hardy field function to
R by assigning the value 0 outside of the domain of definition. We are ultimately
interested in evaluating the functions under consideration on large integers, so this
issue does not affect the reasoning.

We now consider a question raised in [Kon24]: Given a Hardy field function
whose rate of growth is polynomial and faster than linear, is the first-order theory
Th(Z;<,+, ⌊f⌉) (Note that Th(Z;<,+) is equivalent to Th(N; +)) decidable? In
this paper we answer this question negatively. Formally, we prove the following
theorem:

Theorem A. Let f : [x0,∞) → R be a Hardy field function such that

lim
x→∞

f(x)

x
= ∞ and lim

x→∞

f(x)

xd
= 0(1)

for an integer d ≥ 2. Then the first-order theory of Th(Z;<,+, ⌊f⌉) is undecidable.

Similarly, we can also deal with Hardy field functions whose rate of growth is
slower than linear but not too slow.

Theorem B. Let f : [x0,∞) → R be a Hardy field function such that

lim
x→∞

f(x)

xε
= ∞ and lim

x→∞

f(x)

x
= 0(2)

for some ε > 0. Then the first-order theory of Th(Z;<,+, ⌊f⌉) is undecidable.

Broadly, then, the extension of Presburger arithmetic by most polynomial-like
Hardy field functions yields an undecidable theory, as expected.

1.3. Proof Outline. We prove Theorem A in two parts; we first treat the super-
linear case, where the Hardy field function f grows faster than a quadratic poly-
nomial, and the near-linear case, where f grows faster than a linear polynomial
but slower than a quadratic polynomial. Building on these results, we then prove
Theorem B, or the sub-linear case, where f grows slower than a linear function,
separately.

In the super-linear case, we define multiplication using the fact that, over specific
and arbitrarily large intervals, f can be closely approximated by a Taylor polyno-
mial. By differentiating such polynomials, we can define multiplication between
arbitrarily large numbers, and so define multiplication generally.
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In the near-linear case, we use the near-linear growth of f to define an interval
where f looks like a linear function. We show that there are sufficiently many
of these intervals to define multiplication over a restricted domain. By taking
difference sets, we then extend this restricted domain to the whole of Z× Z. This
defines multiplication generally.

In the sub-linear case, we use the fact that the inverse of f can be approximated
in our theory, as well as the fact that the inverse of f grows faster than x, to define
a near-linear or super-linear rounded Hardy field function. We then apply Theorem
A, and undecidability follows.

1.4. Future directions.

1.4.1. Weakening of conditions. In proving Theorem A, we use only a few properties
that Hardy field functions have, namely that they are d-times differentiable and have
well-behaved Taylor approximations. It would be interesting to see which broader
classes of functions also satisfy these requirements, as well as seeing how these
requirements may be weakened further (particularly with regards to the equidistri-
bution results that are required in the proof of Theorem A).

1.4.2. Extension to non-polynomial functions. The proofs above also focus on the
case where f grows only polynomially quickly, but it might be interesting to see
what non-polynomial Hardy field functions provide undecidable extensions of Pres-
burger arithmetic. It seems that functions that grow exponentially or faster, and
their inverses, would provide decidable extensions of Presburger arithmetic by ideas
similar to Semënov’s [Sem80,Sem84]. But functions that grow between polynomi-
ally and exponentially fast seem more interesting.

In particular, it seems that using the function f(x) = 2
√
x we can define a

function with polynomial growth. Taking f−1(f ′(x)) − x, we get a function that
looks similar to

√
x log x, and by the results of this paper rounding this function

and extending Presburger arithmetic by it leads to an undecidable theory. This
then raises the question of how far this idea can be generalised:

Question 1.1. Given a Hardy field function f : [x0,∞) → R such that

lim
x→∞

f(x)

xn
> ∞ and lim

x→∞

f(x)

mx
= 0(3)

for all integers n and m > 1, is the first-order theory of Th(Z;<,+, ⌊f⌉) decidable?

1.4.3. Generalisation to other theories. Given that the theory of Skolem arithmetic,
namely Th(N;×), is decidable [Bès01], it would be interesting to see whether the
similar theory of Th(N;×, ⌊f⌉) is decidable as well. This relates to a question raised
by Korec [Kor01] as to whether the theory Th(N;×, X) is decidable, where X is
the image of some polynomial function. In particular, it would be interesting to see
whether Hardy field functions can in general be used to define addition as well as
multiplication, and so used to show undecidability of the above theory. This leads
us to the following question:

Question 1.2. Let f : R → R be a Hardy field function such that

lim
x→∞

f(x)

xd
= ∞ and lim

x→∞

f(x)

xd+1
= 0(4)

for an integer d > 1. Is the first-order theory of Th(Z;×, ⌊f⌉) decidable?
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A further question along these lines would be whether just the theory Th(N; ⌊f⌉)
is decidable as well.

1.5. Notation. We let N be the set of nonnegative integers {0, 1, 2, . . . }.
For x ∈ R, we define the integer part ⌊x⌋ of x to be max{n ∈ Z | n ≤ x}.

We then define the ceiling of x to be ⌈x⌉ = ⌊−x⌋ and the nearest integer of x
to be ⌊x⌉ = ⌈x− 1/2⌉. When applying the nearest integer function to a function
generally, we write ⌊f⌉ (x) for ⌊f(x)⌉. We also write the circle norm of x as ∥x∥R/Z =

min {|x− n| | n ∈ Z} to denote the distance of x to the nearest integer.

Acknowledgements. The second named author is supported by UKRI Fellowship
EP/X033813/1. For the purpose of open access, the authors have applied a Creative
Commons Attribution (CC BY) licence to any Author Accepted Manuscript version
arising.

2. Hardy fields

We define Hardy fields as follows. Let B be a set of equivalence classes of con-
tinuous real-valued functions in one variable, where we say that two such functions
f and g are equivalent when they eventually agree i.e. when there exists some x0

such that, for all x > x0, we have f(x) = g(x). Such equivalence classes are also
called germs. The set B naturally gives rise to a ring (B,+,×). We say that a
Hardy field is a subfield of the ring (B,+,×) that is closed under differentiation. A
Hardy field function is a function that belongs to a Hardy field, or more precisely
whose germ at ∞ belongs to the union of all Hardy fields.

The union of all Hardy fields is large enough to include a variety of interesting
functions. This includes, as mentioned in Section 1.2, the class of logarithmico-
exponential functions built up from real polynomials, exponentiation, and the tak-
ing of logarithms. This gives us both a natural class of examples of Hardy field
functions, as well as a natural class of functions to compare general Hardy field
functions to.

Hardy field functions exhibit many properties that make them well suited to
analytic arguments. As a first instance of this principle, because of the fact that
every Hardy field function is asymptotically comparable to 0, we have the following
standard fact.

Lemma 2.1. Let f : R → R be a Hardy field function. Then f is either eventually
positive, eventually negative, or eventually zero. Likewise, f is either eventually
increasing, eventually decreasing, or eventually constant.

As a consequence, it makes sense to compare rates of growth of different Hardy
field functions. Given two eventually positive functions f and g belonging to the
same Hardy field, we write:

• f(x) ≪ g(x) if limx→∞ f(x)/g(x) < ∞;
• f(x) ≺ g(x) if limx→∞ f(x)/g(x) = 0;
• f(x) ∼ g(x) if limx→∞ f(x)/g(x) ∈ (0,∞).

Note that f(x) ≪ g(x) holds if and only if either f(x) ≺ g(x) or f(x) ∼ g(x).
In particular, throughout we consider Hardy field functions f : [x0,∞) → R; by

this we mean that f behaves as usual on the half-line [x0,∞), and that f(x) = 0 for
all x < x0. We pick x0 such that f is either strictly increasing or strictly decreasing
over the interval [x0,∞), which by Lemma 2.1 we are licenced to do. This does
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not affect the correctness of our arguments when applied to Hardy field functions
generally, but merely simplifies proofs.

Lemma 2.2. Let f, g : [x0,∞) → R be eventually positive functions belonging to the
same Hardy field. Then either f(x) ≺ g(x) holds, f(x) ∼ g(x) holds, or f(x) ≻ g(x)
holds. Further, exactly one of the above holds.

One convenient feature of Hardy field functions is that their derivatives have a
rate of growth that is easy to describe, as shown in the following result.

Lemma 2.3 ([Fra09, Lem. 2.1]). Let f : [x0,∞) → R be a Hardy field function that
satisfies t−d ≪ |f(t)| ≪ td for some d ∈ N. Then |f ′(t)| ≪ |f(t)| /t.

Another convenient feature of Hardy field functions is that they can be accurately
approximated by their Taylor expansions. Given a function f : [x0,∞) → R that
has sufficiently many derivatives, for x ≥ x0 and y ≥ 0, we can always consider the
length-ℓ Taylor expansion

f(x+ y) = Px,ℓ(y) +Rx,ℓ(y),

where Px,ℓ is the Taylor polynomial

Px,ℓ(y) = f(x) + yf ′(x) + · · ·+ yℓ−1

(ℓ− 1)!
f (ℓ−1)(x),

and Rx,ℓ is the remainder term (which we can consider to be defined simply as
Rx,ℓ(y) = f(x+y)−Px,ℓ(y)). Since Hardy field functions do have sufficiently many
derivatives, we can consider such Taylor expansions of Hardy field functions. We
will use the following standard estimate (similar results can be found e.g. in [Fra09]
or [KM24, Prop. 2.9]).

Proposition 2.4. Let f : [x0,∞) → R be a Hardy field function that satisfies
td−1 ≪ |f(t)| ≺ td for some d ∈ N. Then we have

Rx,d(y) ≪ ydf(x)/xd+1

for sufficiently large x and all 0 ≤ y ≤ x. (The constant implicit in the asymptotic
notation depends only on f).

Proof. Recall that for any x ≥ x0 and y ≥ 0 there exists z ∈ [0, y] such that

Rx,d(y) =
yd

d!
f (d)(x+ z).

Iterating Lemma 2.3 d times, we see that f (d)(t) ≪ f(t)/td → 0 as t → ∞. Since
f (d) is a Hardy field function and is eventually monotone, we have

|Rx,d(y)| ≤
yd

d!

∣∣∣f (d)(x)
∣∣∣ ≪ ydf(x)/xd. □

We will also need the following results on distribution of Hardy field sequences.
(We point out that [Bos94] in fact provides if and only if statements, but we will
only be interested in one direction).

Theorem 2.5 ([Bos94, Thm. 1.9]). Let f1, f2, . . . , fk be functions belonging to the
same Hardy field.

Suppose that for each n1, n2, . . . , nk ∈ Z, not all zero, and for every polynomial
p(x) ∈ Q[x], letting

g(x) = n1f1(x) + n2f2(x) + · · ·+ nkfk(x)− p(x),
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we have limx→∞ |g(x)| = ∞. Then the sequence

(f1(n) mod 1, f2(n) mod 1, . . . , fk(n) mod 1)
∞
n=0

is dense in Rk/Zk.

Remark 2.6. Note that, on the stronger condition that limx→∞ |g(x)| / log x =
∞, the sequence (f1(n) mod 1, f2(n) mod 1, . . . , fk(n) mod 1)

∞
n=0 is also uniformly

distributed in Rk/Zk [Bos94, Thm. 1.8].

3. Proof of the super-linear case

In this section we will prove Theorem A in the case where when f(x) ≫ x2.
Broadly speaking, we will prove that all such Hardy field functions have what will
be called the Pd property, which expresses that a function looks like a polynomial
over arbitrarily long intervals. From that, we will introduce the PZ

d property, which
expresses that f looks like an integer-valued polynomial over arbitrarily long inter-
vals. We will then show that if f has the PZ

d property, then the first-order theory
Th(Z;<,+, ⌊f⌉) is undecidable. A key step of the argument is differentiating the
polynomial given by the PZ

d property.
To begin with, we conduct the proof under the additional assumption that

xd−1 ≺ f(x) ≺ xd for some d ≥ 3. In particular, we initially exclude the case
where f(x) ∼ xd−1, which we cover in a separate Subsection 3.5. The proof in the
latter case follows along broadly similar lines. However, failure of certain equidis-
tribution results forces us to introduce some new ideas.

3.1. The Pd property. We first introduce the Pd property, which holds of a func-
tion when that function can be approximated arbitrarily closely, and over arbitrarily
long intervals, by some polynomial of degree less than d. Formally, we will say that
a function f : [x0,∞) → R has property Pd for some d ∈ N if for each M ∈ N and
ε > 0 there exists some N ∈ N and a degree-(d− 1) polynomial p such that for all
0 ≤ m < M we have |f(N +m)− p(m)| < ε. A convenient feature of Hardy field
functions with polynomial growth is that they enjoy the property Pd, as shown in
the following lemma.

Lemma 3.1. Let f be a Hardy field function such that xd−1 ≪ f(x) ≺ xd for
some d ∈ N. Then f has the Pd property.

Proof. Pick any M ∈ N and ε > 0, and let N be a large integer, to be determined
in the course of the argument. Recall that we can expand f(N +m) as PN,d(m)+
RN,d(m), where PN,d(m) is the degree-(d− 1) Taylor polynomial and RN,d(m) is
the corresponding remainder term. Assuming, as we may, thatN > M , for 0 ≤ m ≤
M by Proposition 2.4 we have |RN,d(m)| ≪ Mdf(N)/Nd. Since f(N)/Nd → 0
as N → ∞, picking sufficiently large N we can ensure that |RN,d(m)| ≤ ε, as
needed. □

3.2. The PZ
d property. Recall that we are ultimately interested not in a Hardy

field function f but rather in its integer-valued rounding ⌊f⌉. Like in the previous
section, let us suppose for a moment that on some interval [N,N +M) the Hardy
field function f is closely approximated by a degree-(d− 1) polynomial p, in the
sense that for all 0 ≤ m < M we have |f(N +m)− p(m)| < ε for some small
constant ε > 0. In this situation, it is not necessarily the case that ⌊f⌉ is closely
approximated by ⌊p⌉. Indeed, if for some 0 ≤ m < M we have f(N + m) >
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k + (1/2) > p(m) with k ∈ Z then ⌊f(N +m)⌉ = k + 1 ̸= k = ⌊p(m)⌉. As a first
step, we would like to avoid this behaviour, which is most easily accomplished by
requiring that ∥f(N +m)∥R/Z and ∥p(m)∥R/Z are both small. Secondly, we note

that (in the regime where M is much larger than d) the only way for ∥p(m)∥R/Z
to be small for all 0 ≤ m < M is if p is closely approximated by an integer-
valued polynomial, i.e. a polynomial q such that q(Z) ⊆ Z (since we only use this
statement as a source of intuition, we leave it admittedly vague). This motivates
us to introduce a property PZ

d , which is an analogue of the property Pd discussed
earlier. We will say that a function f : [x0,∞) → R has property PZ

d for some d ∈ N
if for each M ∈ N and ε > 0 there exists N ∈ N and a degree-(d− 1) integer-valued
polynomial p such that for all 0 ≤ m < M we have |f(N +m)− p(m)| < ε. Above,
we require that the polynomial p should have degree exactly d− 1, as opposed to
at most d− 1; this requirement will play an important role in later considerations.

Lemma 3.2. Let f be a Hardy field function such that xd−1 ≺ f(x) ≺ xd for some
d ∈ N. Then f has the PZ

d property.

Proof. Pick any M ∈ N and ε > 0. Recall from the proof of Lemma 3.1 that for
sufficiently largeN we can accurately approximate f on [N,N+M) using the Taylor
expansion PN,d, meaning that |f(N +m)− PN,d(m)| < ε/2 for all 0 ≤ m < M .
Recall also that the coefficients of PN,d are given by

PN,d(m) =

d−1∑
k=0

f (k)(N)

k!
mk.

Consider the polynomial p obtained from PN,d by applying rounding to each coef-
ficient:

p(m) =

d−1∑
k=0

⌊
f (k)(N)

k!

⌉
mk.

Since p has integer coefficients, it is clearly integer-valued. Our plan is to show
that, for a judicious choice of N , the circle norms of coefficients of PN,d are small
and consequently f is closely approximated by p.

We will apply Theorem 2.5 to the functions f, f ′, . . . , f (d−1)/(d − 1). For each
0 ≤ k ≤ d we have f (k)(x) ∼ f(x)/xk. As a consequence, for any non-trivial
linear combination h(x) = c0f(x) + c1f

′(x) + · · · + cd−1f
(d−1)(x)/(d − 1)! with

c0, c1, . . . , cd−1 ∈ Z we have h(x) ∼ f(x)/xk, where ℓ is the first index with
cℓ ̸= 0. Thus, for any polynomial p with degree e we have |h(x)− p(x)| ∼ f(x)/xℓ

if d − ℓ > e or |h(x)− p(x)| ∼ xe otherwise (that is, if d − ℓ ≤ e). In ei-
ther case, we have |h(x)− p(x)| ≻ 1, as needed. We conclude that the sequence(
f(N), f ′(N), . . . , f (d−1)(N)/(d− 1)!

)∞
N=0

is dense modulo 1, and in particular it
includes points with arbitrarily small circle norms. Hence, we can find N such that
for all 0 ≤ k < d we have: ∥∥∥∥f (k)(N)

k!

∥∥∥∥
R/Z

≤ ε

2dMk
.

Therefore, we have the estimate

|PN,d(m)− p(m)| ≤
d−1∑
k=0

∥∥∥∥f (k)(N)

k!

∥∥∥∥
R/Z

Mk ≤ ε/2.
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Combining this with the previously mentioned estimate on |f(N +m)− PN,d(m)|
we conclude that |f(N +m)− p(m)| < ε, as needed. Finally, increasing N if nec-
essary, we may assume that the leading coefficient of p, i.e.

⌊
f (d−1)(N)/(d− 1)!

⌉
,

is non-zero. □

3.3. Discrete derivatives. Using Lemma 3.2, for a Hardy field function f satisfy-
ing the assumptions of Theorem A, we can find arbitrarily long intervals [N,N+M)
where ⌊f⌉ agrees some integer-valued polynomial p. The goal of the next two sub-
sections is to prove the following lemma, asserting that this property implies that
the theory Th(Z;<,+, ⌊f⌉) is undecidable.

Lemma 3.3. Let f : [x0,∞) → R be a function that satisfies the PZ
d property for

some d ≥ 3. Then the theory Th(Z;<,+, ⌊f⌉) is undecidable.

A key ingredient of the proof of Lemma 3.3 is the notion of differentiation for se-
quences indexed by integers, which will ultimately help us define multiplication. To
this end, we introduce the discrete derivative and the symmetric discrete derivative
of a function:

Definition 3.4. Given a function f : Z → R and an integer m, the discrete deriv-
ative ∆m f : Z → R is given by

∆m f(n) = f(n+m)− f(n)

and the symmetric discrete derivative ◦∆mf : Z → R is given by

◦∆mf(n) = ∆m ∆n f(0) = f(n+m)− f(n)− f(m) + f(0).

Of course, the discrete derivative of an integer-valued function is again integer-
valued. We also point out that the discrete derivative operators commute: ∆m∆n =
∆n∆m. The symmetric derivative, as the name suggests, is a symmetric function
of the arguments: ◦∆mf(n) = ◦∆ nf(m). For reasons of symmetry, given an integer
r ≥ 1 and integers n0, n1, . . . , nr we write

◦∆ rf(n0, n1, . . . , nr) for ◦∆ nr ◦∆ nr−1 . . . ◦∆n1 f(n0).

A particularly useful feature of the discrete derivative (symmetric or otherwise)
is that its application to a polynomial yields a polynomial of degree one less. As a
consequence, its repeated application only leaves the leading term of the function
to be considered. We make this observation concrete in the following result.

Lemma 3.5. Let m be an integer and let p be a polynomial of degree r with leading
coefficient ar.

(i) If r ≥ 1 then ∆mp is a polynomial with degree r − 1 and leading coefficient
rarm. If r = 0 then ∆mp = 0.

(ii) If r ≥ 2 then ◦∆m p is a polynomial with degree r− 1 and leading coefficient
rarm. If r = 0 or r = 1 then ◦∆m p = 0.

Proof. It is straightforward to verify by an explicit computation that item (i) holds
for r = 0 and item (ii) holds for r = 0, 1. For r ≥ 2, ∆mp and ◦∆m p differ only by
a constant (equal to p(m)− p(0)) so it suffices to prove item (i).

We proceed by induction on r, the case r = 0 already having been considered.
Thus, we may assume that r ≥ 1 and the claim has already been proved for all
r′ < r.
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We may write p(x) = arx
r+ p̃(x) where deg p̃ < r. By the inductive assumption,

∆mp̃ is a polynomial of degree strictly less than r− 1 (or identically zero if r = 1),
so it suffices to deal with the leading term. We can explicitly compute that

ar(x+m)r − arx
r =

r∑
k=1

(
r

k

)
arm

kxr−k,

where the right side is a degree-(r − 1) polynomial with leading coefficient rarm,
as needed.

□

For brevity, we write ◦∆ rf(a, b) for ◦∆ rf(a, b, 1, 1, . . . , 1) whenever r ≥ 1. As an
application of Lemma 3.5 we almost immediately get the following formula.

Lemma 3.6. Let p be a polynomial with degree r and leading coefficient ar. Then
◦∆r−1 p(n,m) = r!arnm.

Proof. Iterating Lemma 3.5 we see that ◦∆r−1 p(n,m) is a polynomial function
of n with degree 1 and leading coefficient r!arm. To see that all the remaining
coefficients are zero, it is enough to recall that ◦∆r−1 p(n,m) is a symmetric function
of n and m, and that ◦∆r−1 p(0, 0) = 0. □

In the direction opposite to Lemma 3.5, we have the following characterisation
of polynomials in terms of discrete derivatives. It is a standard observation for
instance following from discussion in [GKP90, Section 2.6]; we include proof for
completeness.

Lemma 3.7. Let r ≥ 0 and let f : [N,N + M) → R be a sequence such that
∆r+1

1 f(n) = 0 for N ≤ n < N +M − r− 1. Then f coincides with a polynomial of
degree at most r.

Proof. For any polynomial p of degree at most r we have ∆r+1p = 0, so we may
freely replace f with f − p. Applying Lagrange interpolation, we may thus assume
that f(N) = f(N + 1) = · · · = f(N + r) = 0. Since ∆r+1

1 f(n) = 0 for all n where
it is defined, we see that if we have f(n) = f(n + 1) = · · · = f(n + r) = 0 for
some N ≤ n < N +M − r − 1 then also f(n+ r + 1) = 0. Reasoning by induction
with respect to n we thus conclude that f(m) = 0 for all N ≤ m < N + M . In
particular, f is a polynomial of degree at most r □

3.4. Emulating multiplication. Using the results obtained in Section 3.3, we
next show how to use property PZ

d to emulate multiplication. Recall that PZ
d

implies that we can find arbitrarily long intervals [N,N + M) where ⌊f⌉ agrees
with an integer-valued polynomial p (in the sense that ⌊f⌉ (N +m) = p(m)). What
is more, we can use Lemma 3.7 to detect intervals with the property mentioned
above. Given such an interval, for 1 ≤ a, b, c ≤ M we can use Lemma 3.6 to express
the property that ab = c as ◦∆d−2 p(a, b) = ◦∆d−2 p(c, 1). We now put this plan into
practice.

Lemma 3.8. Let d ≥ 2 and let πd(N,M) be the sentence given by

∃c ̸= 0 ∀0 ≤ m < M − d ∆d−1
1 ⌊f⌉ (N +m) = c.

Then πd(N,M) holds if and only if there exists a polynomial p with degree exactly
d− 1 such that ⌊f⌉ (N +m) = p(m) for all 0 ≤ m < M .
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Proof. Suppose that π(N,M) holds. Applying ∆1 once more, we conclude from
Lemma 3.7 that ⌊f⌉ agrees with a polynomial p of degree at most d−1 on [N,N+m).
If p had degree strictly less than d− 1 then, by repeated application of Lemma 3.5,
we would have ∆d−1

1 ⌊f⌉ (N + m) = 0 ̸= c, contradicting πd(N,M). Thus, p has
degree exactly d− 1, as needed.

Suppose now that there exists a polynomial p with degree exactly d − 1 such
that ⌊f⌉ (N + m) = p(m) for all 0 ≤ m < M . Then, by repeated application of

Lemma 3.5, we have ∆d−1
1 ⌊f⌉ (N +m) = (d − 1)!ad−1, where ad−1 is the leading

coefficient of p. Thus, setting c = (d− 1)!ad−1 we see that πd(N,M) holds. □

Lemma 3.9. Let d ≥ 3 and let µd(n,m, q) be the sentence given by

∃M > max(n,m, q) ∃N πd(N,M) ∧∆d−3
1 ∆n∆m ⌊f⌉ (N) = ∆d−2

1 ∆q ⌊f⌉ (N).

Assume that f enjoys property PZ
d and n,m, q ≥ 1. Then, for n,m, q ∈ N we have

that µd(n,m, q) holds if and only if q = nm.

Proof. Suppose that µ(n,m, q) holds. Pick admissible M and N . Since, in par-
ticular, πd(N,M) holds, we know from Lemma 3.8 that there exists a polynomial
p of degree d − 1 such that ⌊f⌉ (N + m) = p(m) for 0 ≤ m < M . The equality
between the discrete derivatives in the definition of µ(n,m, q) can now more simply

be expressed as ◦∆d−2 p(n,m) = ◦∆d−2 p(q, 1). By Lemma 3.6, this implies that
nm = q, as needed.

Next, suppose that q = nm. Pick M = q + 1. By PZ
d , we can find N and a

polynomial p of degree exactly d− 1 such that f(N +m) = p(m) for 0 ≤ m < M .

By Lemma 3.8, πd(M,N) holds. By Lemma 3.5, we have ◦∆d−2 p(n,m) = (d −
1)!ad−1nm = (d− 1)!ad−1q = ◦∆d−2 p(q, 1). Hence µ(n,m, q) holds, as needed. □

Proof of Lemma 3.3. It follows from Lemma 3.9 that multiplication on N is defin-
able in Th(Z;<,+, ⌊f⌉), and extending it to Z is immediate. Since Th(Z;<,+,×)
is undecidable, so is Th(Z;<,+, ⌊f⌉). □

Combining Lemmas 3.2 and 3.3, we conclude that for each d ≥ 3 and each Hardy
field function f with xd−1 ≺ f(x) ≺ xd, the theory Th(Z;<,+, ⌊f⌉) is undecidable.
This completes the proof of the first case of Theorem A.

3.5. Generalisation to exactly polynomial growth. Finally, we show how the
argument in the earlier sections to sequences with exactly polynomial growth. Re-
call that previously we considered Hardy a field function f with xd−1 ≺ f(x) ≺ xd

for some d ≥ 3. Presently, we will instead assume that f(x) ∼ xd−1 (note that we
make this choice instead of the more natural f(x) ∼ xd for the sake of consistency
with earlier considerations).

Significant part of the previously presented argument goes through without any
change. Indeed, it remains the case that f enjoys the Pd property and can be
accurately approximated by the Taylor polynomial PN,d. Unfortunately, we are not
able to establish the PZ

d property. When we try to repeat the previous argument,
the d-tuple formed by the coefficients of PN,d, namely

(f(N), f ′(N), f ′′(N)/2, . . . , f (d−1)(N)/(d− 1)!),

is not equidistributed modulo 1. Indeed, the top coefficient f (d−1)(N)/(d − 1)!
can easily be shown to converge to a constant, and the behaviour of the remaining
coefficients is potentially more complicated.
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Because of the aforementioned limitation, we adapt the remainder of the argu-
ment to use property Pd instead of PZ

d . This introduces some complications since
we are forced to apply discrete derivatives to functions of the form ⌊p⌉, where p
is a polynomial, rather than to polynomials. Fortunately, the following lemma al-
lows us to control errors arising from the rounding operation; we will apply it to
h(n) = p(n)− ⌊p(n)⌉.

Lemma 3.10. Let h : Z → R be a sequence with |h(n)| ≤ ε for all n ∈ Z. Then

|∆m1
∆m2

. . .∆mr
h(n)| ≤ 2rε

for all integers r ≥ 1 and all n,m1,m2, . . . ,mr ∈ Z.

Proof. For r = 1, the result follows from a straightforward computation. For r > 1,
we use a standard inductive argument. □

Using Lemma 3.10, we define a coarser variant of multiplication, which we then
bootstrap to a definition of multiplication. This finishes the proof of the relevant
case of Theorem A. We now put the strategy discussed above into practice. For-
mally, we establish the following result.

Proposition 3.11. Let f : [x0,∞) → R be a Hardy field function where f(x) ∼
xd−1 for some d ≥ 3. Then the theory Th(Z;<,+, ⌊f⌉) is undecidable.

Proof. Fix an integer M and let N be sufficiently large such that the Hardy field
function f is closely approximated by the degree-(d − 1) polynomial PN,d, in the
sense that we have |f(N +m)− PN,d(m)| < 1/10 for all 0 ≤ m < M . Recall

that the leading coefficient of PN,d is f (d−1)(N)/(d− 1)!, which converges to some
non-zero constant α as N → ∞. Let p be the polynomial obtained from PN,d by
replacing the leading coefficient with α. Picking larger N if necessary, we may freely
assume that |f(N +m)− p(m)| < 1/10 for all 0 ≤ m < M .

Note that, since p is a polynomial of degree d− 1, we can apply Lemma 3.6 to it
and get that ◦∆d−2 p(n,m) = (d− 1)!αnm. Bearing in mind that we aim to adapt
Lemma 3.9, we use Lemma 3.10 to approximate∣∣∆d−3

1 ∆n∆m ⌊f⌉ (N)− (d− 1)!αnm
∣∣ ≤ 2d−1,

provided that 0 ≤ n,m < M . This motivates us to consider, for 0 ≤ a, b, c < M ,
the quantity FN (a, b, c) defined as follows:

FN (a, b, c) = ∆d−3
1 ∆a∆b ⌊f⌉ (N)−∆d−2

1 ∆c ⌊f⌉ (N).

The estimate obtained above implies that we have

|FN (a, b, c)− (d− 1!)α(ab− c)| ≤ 2d.

Fix an integer D ≥ 100 · 2d/min(1, (d− 1)!α). The estimate above allows us to
prove the following lemma:

Lemma 3.12. Let 0 ≤ a, b, c < M . Then |FN (Da, b,Dc)| ≤ 2d if and only if
ab = c.

Proof. For the rightwards direction of proof, first suppose that ab ̸= c. Since ab− c
is a non-zero integer, it follows that |Dab−Dc| ≥ D. Hence |FN (Da, b,Dc)| ≥
(d− 1)!αD − 2d > 2d, as needed.

For the leftwards direction of proof, suppose that ab = c. Then Dab −Dc = 0
as well. It follows that |FN (Da, b,Dc)| ≤ 2d as required. □
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Note that |FN (Da, b,Dc)| is definable in Th(Z;<,+, ⌊f⌉). Thus, Lemma 3.12
allows us to define multiplication in Th(Z;<,+, ⌊f⌉). More formally, let µ′(n,m, q)
denote the formula

∀N0 ∃N ≥ N0 |FN (Da, b,Dc)| ≤ 2d.

It follows from the preceding discussion (in particular Lemma 3.12) that µ′(n,m, q)
holds if and only if ab = c. Recalling that Th(Z;<,+,×) is undecidable and that
multiplication is definable in Th(Z;<,+, ⌊f⌉), we conclude that Th(Z;<,+, ⌊f⌉) is
undecidable. □

Remark 3.13. One could use the techniques used here in order to establish Theo-
rem A also in the case where xd−1 ≺ f(x) ≺ xd. We take the route discussed earlier
because we consider it to be more elegant, and because it has the added advantage
of allowing us to identify the property PZ

d .

Remark 3.14. We note that previously, we were able to establish undecidability of
Th(Z;<,+, ⌊f⌉) as the consequence purely of the property PZ

d . This is in contrast
with the argument discussed presently, which uses a property strictly stronger than
Pd, namely that f is closely approximable by a polynomial on the interval [N,N +
M) for all N that are sufficiently large (as a function of M). It would be interesting
to determine if the property Pd by itself is sufficient to establish undecidability. The
key difficulty to this approach is finding a suitable analogue of Lemma 3.8.

4. Proof of the near-linear case

In this section, we prove the second case of Theorem A where f grows super-
linearly but sub-quadratically i.e. when x ≺ f(x) and f(x) ≺ x2. To this end, we
first define multiplication over a limited domain, using the fact that over certain
intervals f can be closely approximated by a linear function. We then use difference
sets to extend this definition of multiplication to the whole of Z×Z and thus show
Th(Z;<,+, ⌊f⌉) undecidable.

4.1. Multiplicative intervals. We first define a property λ(N,M,n) which, infor-
mally, states that over the interval [N,N+M) the function ⌊f⌉ defines an arithmetic
progression with step n. Formally, we define λ by

λ(N,M,n)
def
= (∀ 0 ≤ m < M) ⌊f⌉ (N +m+ 1) = ⌊f⌉ (N +m) + n.

It is routine to show that λ(N,M,n) holds if and only if for all 0 ≤ m < M we
have ⌊f⌉ (N+m)−⌊f⌉ (N) = mn. Our next step is to establish sufficient conditions
for λ(N,M,n) to hold.

Lemma 4.1. Let f : [x0,∞) → R be a Hardy field function with x ≺ f(x) ≺ x2.
Then there exists x1 ≥ x0 such that λ(N,M,n) holds for all N,M,n ∈ N satisfying
the following conditions: (1) N ≥ x1; (2) ∥f(N)∥R/Z < 1/4; (3) |f ′(N)− n| <
1/(8M); (4) f ′′(N) < 1/(8M2).

Proof. Informally speaking, we first approximate f(N+m) by f(N)+f ′(N)m, then
approximate f ′(N) by n, and finally apply rounding to conclude that ⌊f⌉ (N+m) =
⌊f⌉ (N) +mn.

Formally, our first goal is to show that

|f(N +m)− f(N)− f ′(N)m| < 1

16
.(5)
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Towards this end, we consider the Taylor expansion of f at N . We have

f(N +m) = f(N) + f ′(N)m+
1

2
f ′′(N + t)m2

for some t ∈ [0,m]. Thus, the expression on the right side of (5) is

|f(N +m)− f(N)− f ′(N)m| =
∣∣∣∣12f ′′(N + t)m2

∣∣∣∣ ≤ M2

2
|f ′′(N + t)| .

Since f(x) ≺ x2, we know that f ′′(x) ≺ 1, meaning that f ′′(x) → 0 as x → ∞. As
a consequence, f ′′ is eventually decreasing, and picking x1 sufficiently large we may
assume that f ′′ is decreasing on [N,∞). Thus, condition (1) allows us to simplify
our estimate to

|f(N +m)− f(N)− f ′(N)m| ≤ M2

2
|f ′′(N)| ≤ 1

16
,

where the last inequality follows from condition (4). This completes the proof of
(5).

In order to approximate f ′(N) by n we simply use condition (3), which imme-
diately yields

|f ′(N)m− nm| < 1

8
.

Combining this with (5), we get

|f(N +m)− f(N)− nm| < 1

16
+

1

8
<

1

4
.(6)

It remains to deal with rounding. We have

a(N +m)−a(N)−nm = ⌊f(N +m)⌉−⌊f(N)⌉−nm ⌊f(N +m)−⌊f(N)⌉−nm⌉ .

Bearing in mind that ⌊x⌉ = 0 for all x with |x| < 1/2, in order to show that
⌊f⌉ (N +m) = ⌊f⌉ (N) + nm, it suffices to estimate that

|f(N +m)− ⌊f(N)⌉ − nm| ≤ 1

4
+ |f(N) + nm− ⌊f(N)⌉ − nm|

=
1

4
+ ∥f(N)∥R/Z <

1

2

Note that the first inequality follows from (6), and the last one from condition (2).
□

In the following lemma, we show how the conditions of Lemma 4.1 hold suffi-
ciently often.

Lemma 4.2. Let f : [x0,∞) → R be a Hardy field function with x ≺ f(x) ≺ x2.
Then for any real x1 ≥ x0 and ε0, ε1, ε2 > 0 there exists integer n0 such that for
each n ≥ n0 there exists integer N satisfying the following conditions: (1) N ≥ x1;
(2) ∥f(N)∥R/Z < ε0; (3) |f ′(N)− n| < ε1; (4) f ′′(N) < ε2.

Proof. Decreasing ε0, ε1, ε2 if necessary (in this order), we may freely assume that
ε0, ε1, ε2 < 1/10 and we have the inequalities:

ε1 <
10

3
ε0,

ε1
ε2

>
25

ε1
+ 5 > 50.

(The motivation behind these inequalities will become apparent in the course of
the argument). Picking a sufficiently large value of n0 we may freely assume that
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there exists X0 ≥ x1 such that f ′(X0) = n, f ′′(X0) < ε2, and f, f ′, f ′′ are strictly
monotone on [X0,∞). Let X1, X2, X3 be specified by

f ′(X1) = n+
1

5
ε1, f ′(X2) = n+

2

5
ε1, f ′(X3) = n+

3

5
ε1.

Let also N1 = ⌈X1⌉ < X1+1 andN3 = ⌊X3⌋ > X3−1. Note that f ′(X1)−f ′(X0) =
ε1/5 and f ′′(x) ≤ f ′′(X0) ≤ ε2 for x ∈ [X0, X1], so the mean value theorem implies
that

X1 −X0 ≥ ε1
5ε2

≥ 10.

By the same token, we have X2 − X1, X3 − X2 ≥ 10, which in particular implies
that N3 − N1 ≥ 10 (which is not strictly speaking necessary, but ensures that all
the points under consideration appear in the order we expect). For all integers N
with N1 ≤ N ≤ N3 we have:

N ≥ x1, n+
1

5
ε1 ≤ f ′(N) ≤ n+

3

5
ε1, 0 < f ′′(N) ≤ ε2,

which implies that N satisfies three out of the four desired conditions.
It remains to show that there existsN withN1 ≤ N ≤ N3 such that ∥f(N)∥R/Z <

ε0. We will in fact show that for each arc A ⊆ R/Z with length 2ε0 there ex-
ists N with N1 ≤ N ≤ N3 such that f(N) mod 1 ∈ A. Consider the function

f̃(N) = f(N) − nN . Since f̃(N) ≡ f(N) mod 1, in the previous condition we

may equally well require that f̃(N) mod 1 ∈ A. By the mean value theorem, for
N1 ≤ N < N3, the value of the expression

f̃(N + 1)− f̃(N) = f(N + 1)− f(N)− n

belongs to the interval
[
1
5ε1,

3
5ε1

]
. Since 3ε1/5 < 2ε0, it follows that, for each

interval I of length 2ε0 contained in the interval [f(N1), f(N3)], there exists some

N with N1 ≤ N ≤ N3 with f̃(N) intersecting I. By the mean value theorem, we
have

N3 −N1 ≥ X3 −X1 − 2 ≥ f ′(X3)− f ′(X1)

maxX1≤x≤X3
f ′′(x)

− 2

=
f ′(X3)− f ′(X1)

f ′′(X1)
− 2 ≥ 2ε1

5ε2
− 2 ≥ 10

ε1
.

As a consequence, using the mean value theorem yet again, we get

f(N3)− f(N1) ≥ (N3 −N1) min
N1≤x≤N3

f ′(x)

= (N3 −N1)f
′(N1) ≥

10

ε1
· ε1
5

= 2.

Thus, we can find an interval Ã ⊆ [f(N1), f(N3)] such that Ã mod 1 = A, and we

can find N with N1 ≤ N ≤ N3 with f̃(N) ∈ Ã. This completes the argument. □

Combining Lemmas 4.1 and 4.2, we immediately obtain the following conse-
quence.

Corollary 4.3. For each M there exists n0 such that for all n ≥ n0 there exists N
such that λ(N,M,n) holds.
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4.2. Restricted multiplication. In the previous subsection, we established suf-
ficient conditions for λ(N,M,n) to hold. We now show how we can use λ to define
a restricted form of multiplication. Towards this end, we consider the condition
µ0(n,m, p) given by

∃N ∃(0 ≤ m < M) λ(N,M,n) ∧ (a(N +m) = a(N) + p).

Recalling that λ(N,M,n) implies that ⌊f⌉ (N + m) = ⌊f⌉ (N) + nm, we imme-
diately see that if µ0(n,m, p) holds then p = nm. Thus, µ0 defines multiplica-
tion on the (definable) set D0 ⊆ Z × Z consisting of the pairs (n,m) such that
µ0(n,m, p).Corollary 4.3 now translates into the following statement.

Corollary 4.4. For each m ∈ N there exists tm such that [tm,∞)× {m} ⊆ D0.

Our next goal is to extend the definition of multiplication from D0 to all of Z×N.

4.3. Difference sets and total multiplication. Finally, we show that we can
extend the restricted multiplication defined by µ0 using difference sets. Informally,
we rely on the fact that once we have defined nm and n′m we can define (n−n′)m
by distributivity. To this end, define the following formula:

µ1(n,m, p)
def
= ∃n′, n′′, p′, p′′ (µ0(n

′,m, p′) ∧ µ0(n
′′,m, p′′)

∧ n = n′′ − n′ ∧ p = p′′ − p′).

This lets us prove the following lemma.

Lemma 4.5. Let m ∈ N and n, p ∈ Z. Then the formula µ1(n,m, p) holds if and
only if nm = p.

Proof. For the rightwards direction of proof, we know already that if µ0(n,m, p)
holds then nm = p. Given that n′m = p′ and n′′m = p′′, with n = n′′ − n′ and
p = p′′−p′, we can show by a routine computation that nm = p. So the rightwards
direction of proof is shown.

For the leftwards direction of proof, given that nm = p, we fix m. By Corollary
4.4, we know there exists some natural tm such that [tm,∞)×{m} ⊆ D0. Thus we
know that multiplication on pairs (n1,m) is defined by µ0 when n1 > tm. So take
n′ = tm and n′′ = tm + n, and likewise take p′ = n′m and p′′ = n′′m. It follows
that µ0(n

′,m, p′) and µ0(n
′′,m, p′′) both hold, and further that n = n′′ − n′ and

p = p′′ − p′ hold. Therefore µ1(n,m, p) holds, as required. □

Once multiplication is defined on N×Z is it immediate to extend it to Z×Z. Thus,
by Lemma 4.5, we can defined multiplication over the whole domain of Z×Z in the
theory Th(Z;<,+, ⌊f⌉). It follows that the theory Th(Z;<,+, ⌊f⌉) is undecidable,
completing the proof of Theorem A.

5. Proof of the sub-linear case

We now move to prove Theorem B. Recall that here we assume f grows at least
as fast as xε for some ε > 0 but more slowly than x. Using this, we define a
function which approximates f−1(x− (1/2))+(1/2). Given that the latter function
is a Hardy field function which grows faster than x, we apply Theorem A and show
that the theory Th(Z;<,+, f) is undecidable.

Note that throughout we use the fact that, if f is a Hardy field function, then
so is f−1; we take this fact from [AvdD04, Theorem 1.7].
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Proof of Theorem B. Let f : [x0,∞) → R be a Hardy field function where

xε ≺ f(x) and f(x) ≺ x.

both hold for some ε > 0.
Define the function b(m) = min {n ∈ Z | ⌊f⌉ (n) ≥ m}, which behaves roughly

like the inverse of ⌊f⌉. Formally, we define b(m) in our theory as the unique value
of n satisfying the formula

⌊f⌉ (n) ≥ m ∧ ∀k (⌊f⌉ (k) ≥ m → k ≥ n).

Increasing the value of x0 if necessary, we may freely assume that f is strictly
increasing. Additionally, we define the function g : [y0,∞) → R by g(y) = f−1(y −
(1/2))+(1/2), where y0 is sufficiently large for the above definition to be well-posed.
The main lemma we need to prove Theorem B is the following.

Lemma 5.1. There exists an integer m0 such that b(m) = ⌊g(m)⌉ for all integers
m ≥ m0.

Proof. Recall that we assume that f : [x0,∞) → R is a strictly increasing function.
Under this assumption, the inverse f−1 : [f(x0),∞) → R can be characterised
as f−1(y) = min {x ∈ R | f(x) ≥ y}. For an integer m ≥ m0 and real x we have
f(x) ≥ m−1/2 if and only if ⌊f⌉ (x) ≥ m, directly from the definition of the nearest
integer function. Thus, we know that

{x ∈ R | ⌊f⌉ (x) ≥ m} =

{
x ∈ R

∣∣∣∣ f(x) ≥m− 1

2

}
=

{
x ∈ R

∣∣∣∣x ≥ f−1

(
m− 1

2

)}
=

{
x ∈ R

∣∣∣∣x ≥ g(m)− 1

2

}
.

Restricting our attention to integers, we conclude that

{n ∈ Z | n ≥ b(m)} = {n ∈ Z | ⌊f(n)⌉ ≥ m}

=

{
n ∈ Z

∣∣∣∣ n+
1

2
≥ g(m)

}
= {n ∈ Z | n ≥ ⌊g(m)⌉} .

Thus, we have b(m) = ⌊g(m)⌉, as needed. □

Now, g is a Hardy field function, as f−1 is. Thus, Theorem A can be applied to
show the theory Th(Z;<,+, g) undecidable. We do this using the following lemma.

Lemma 5.2. We have g(x) ≺ x and g(x) ≻ x1/ε.

Proof. Increasing x0 if necessary, we may freely assume that f is strictly increasing
on [x0,∞). We know that for each δ > 0 there exists n0 ≥ x0 such that n ≥ n0

we have f(n) < δn. Taking m0 = f(n0), it follows that for all m ≥ m0 we have
f−1(m) > (1/δ)m. Thus, f−1(x) ≺ x and consequently g(x) ≺ x, as needed. The
proof that g(x) ≻ x1/ε is entirely analogous. □

By Lemma 5.2 the theory Th(Z;<,+, g) is undecidable. Since by Lemma 5.1
we can define ⌊g⌉ in Th(Z;<,+, ⌊f⌉), it follows that the theory Th(Z;<,+, ⌊f⌉) is
undecidable as well. This concludes the proof of Theorem B. □
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